Ministry asks SAI to ensure athletes get food supplements

first_imgNew Delhi, May 17 (PTI) The Sports Ministry has directed the Sports Authority of India to get in touch with Athletics Federation of India so that the track and field athletes at the NIS Patiala receive the required dope-free supplements. The direction came after Sports Minister Sarbanada Sonowals surprise visit at the centre. He heard the grievances of the senior as well as junior athletes at the NIS, some preparing for Rio Olympics, apart from having first hand knowledge of the facilities being provided to the campers. Upon learning that athletes have not been provided food supplements, the minister gave SAI two days to get the job done. AFI officials said there were some issues regarding the purchase of the supplements but they have now got the stock and it will be distributed to the athletes from tomorrow. “The issue arose after the SAI for the first time had stopped giving the food supplements to the athletes and told us to do the job from now onwards. We were told this last month. It is not easy for us to begin the job and so took time,” a top AFI official said. “But we have completed purchase of the supplements and we will start distributing from tomorrow,” he added. It may be mentioned that close to 40 athletes have already left for Poland for training and a few athletes such as shot putter Manjeet Kaur, who has qualified for Rio Games, are training at NIS. “During his day-long visit, the minister went to the hostels, training arenas, mess, recovery centre and various departments of sports sciences to have a first hand knowledge of the facilities being provided to the campers. He interacted with the campers, coaches and sports scientists etc. to receive their feedback on the facilities being provided and further improvement, if needed,” a press release stated. The Minister also directed that an indoor track at the Institute be laid at the earliest to provide better training facilities to junior campers, who are preparing for 2020 Tokyo Games. PTI AT PDS KHSadvertisementlast_img read more

Modifications render carbon nanotubes nontoxic

first_imgAddThis ShareCONTACT: Jade Boyd PHONE: (713) 348-6778 E-MAIL: [email protected] Modifications render carbon nanotubes nontoxicRice team mitigates toxicity of tiny cylinders with chemical changes In follow-on work to last year’s groundbreaking toxicological study on water-soluble buckyballs, researchers at Rice University’s Center for Biological and Environmental Nanotechnology (CBEN) find that water-soluble carbon nanotubes are significantly less toxic to begin with. Moreover, the research finds that nanotubes, like buckyballs, can be rendered nontoxic with minor chemical modifications. The findings come from the first toxicological studies of water-soluble carbon nanotubes. The study, which is available online, will be published in an upcoming issue of the journal Toxicology Letters. The research is a continuation of CBEN’s pioneering efforts to both identify and mitigate potential nanotechnology risks. “Carbon nanotubes are high-profile nanoparticles that are under consideration for dozens of applications in materials science, electronics and medical imaging,” said CBEN Director Vicki Colvin, the lead researcher on the project. “For medical applications, it is reassuring to see that the cytotoxicity of nanotubes is low and can be further reduced with simple chemical changes.” Research has been conducted on the toxicity of carbon nanotubes, but CBEN’s is the first to examine the cytotoxicity of water-soluble forms of the hollow carbon molecules. In their native state, carbon nanotubes are insoluble, meaning they are incompatible with the water-based environment of living systems. Solubility is a key issue for medical applications, and researchers at Rice and elsewhere have developed processing methods that render nanotubes soluble. In particular, scientists are keen to exploit the fluorescent properties of carbon nanotubes for medical diagnostics. Nanotubes are long, hollow molecules of pure carbon with walls just one atom thick. They are related to buckyballs, tiny spheres of pure carbon that are about the same diameter. In previous studies with buckyballs, CBEN found that even minor surface modifications could dramatically reduce cytotoxicity. The nanotube study found similar results. In both cases, the researchers identified specific alterations that reduce toxicity. Cytotoxicity refers to toxic effects on individual cells. In cytotoxicological studies, identical cell cultures are exposed to various forms and concentrations of toxins. In order to compare the toxicity of different compounds, scientists look for the concentration — typically measured in parts per million or parts per billion — of materials that lead to the death of 50 percent of the cells in a culture within 48 hours. In the current study, CBEN researchers exposed skin cell cultures to varying doses of four types of water-soluble single-walled carbon nanotubes, or SWNTs. The four included pure, undecorated SWNTs suspended in soapy solution and three forms of nanotubes that were rendered soluble via the attachment of the chemical subgroups hydrogen sulfite, sodium sulfite and carboxylic acid. The cytotoxicity of undecorated SWNTs was 200 parts per billion, which compares to the level of 20 parts per billion identified last year for undecorated buckyballs. The modified nanotubes were non-cytotoxic. While cell death did increase with dose concentration, cell death never exceeded 50 percent for these compounds, which were each tested to a level of 2,000 parts per million. Just as with buckyballs, CBEN found that higher degrees of surface modification led to lower toxicity for SWNTs. “We now have two studies on carbon nanoparticles that show us how to make them dramatically less cytotoxic,” said CBEN Executive Director Kevin Ausman, a co-author of the study. “In both cases, it’s the same answer: change the surfaces. This is an important demonstration that there are general trends in biological responses to nanoparticles.” Co-authors on the paper include graduate students Christie Sayes, Feng Liang, Jared Hudson, Jonathan Beach and Condell Doyle; undergraduate Joe Mendez; research scientists Wenhua Guo and Valerie Moore; Professor of Chemistry Edward Billups; and Jennifer West, the Isabel C. Cameron Professor of Bioengineering, professor of chemical and biomolecular engineering, and director of the Institute of Biosciences and Bioengineering. CBEN research is funded by the National Science Foundation. last_img read more